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Abstract

An Element Free Galerkin "EFG# method based formulation for steady dynamic crack growth in elasticÐ
plastic materials is developed[ A domain convecting parallel to the steadily moving crack tip is employed[
The EFG methodology eliminates the stringent mesh requirements of the Finite Element Method "FEM#
for such problems[ Both rate!independent materials and rate!dependent materials are considered[ The
material is characterized by von Mises yielding condition and an associated ~ow rule[ For rate!independent
materials\ both the in~uence of crack speeds and that of strain hardening on the mechanics of steady dynamic
crack growth are investigated[ For rate!dependent materials\ only a non!hardening material is considered
with emphasis on determining the in~uence of viscous properties of materials and crack speeds[ The in~uence
of strain hardening on steady dynamic crack growth shows the same trends as for steady quasi!static crack
growth[ The simpli_cations used in the literature in deriving analytical solutions for high strain!rate crack
growth have been examined thoroughly using the numerical results[ Þ 0887 Elsevier Science Ltd[ All rights
reserved[

0[ Introduction

Steady dynamic growth of a mode I crack under plane strain conditions has been investigated
for di}erent types of nonlinear material behaviors in the literature\ e[g[ the elasticÐplastic materials
and the elasticÐviscoplastic materials[ For the former\ simple material models\ such as an elasticÐ
perfectly plastic material\ or an elasticÐplastic material with bilinear stressÐstrain relation or
an elasticÐperfectly incompressible material have been employed in Achenbach et al[ "0870a#\
Achenbach and Dunayevsky "0870b#\ Gao and Nemat!Nasser "0872# and Leighton et al[ "0876#[
The emphasis in these studies has been on determining the e}ect of crack speeds[ For elasticÐ
viscoplastic materials\ simple material models\ such as a linearly!viscous plastic model\ have been
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considered and the emphasis has been on the study of the viscous e}ects of these materials "see
e[g[ Freund and Hutchinson\ 0874^ Mataga et al[\ 0876#[ Compared to the investigations on
steady quasi!static growth of mode I cracks in an elasticÐplastic material\ not many numerical
investigations of steady dynamic growth of mode I cracks are available in the literature[ The
available analytical investigations have either relied on simplifying approximations "see e[g[ Ach!
enbach et al[\ 0870a^ Achenbach and Dunayevsky 0870b^ Freund and Hutchinson\ 0874^ Mataga
et al[\ 0876# or focused on the incompressible materials "see e[g[ Gao and Nemat!Nasser\ 0872^
Leighton et al[\ 0876#[

A few asymptotic analyses of steady dynamic growth of a mode I crack in an elasticÐperfectly
plastic material have been made[ Considering elastic compressibility of materials\ both Slepyan
"0865# and Achenbach and Dunayevsky "0870b# derived asymptotic near!tip stress and defor!
mation _elds[ Their solutions are only applicable when the crack speed is small compared to the
shear wave speed of the material[ In their analysis\ while the Tresca yielding condition was used\
the Mises ~ow rule was employed to relate the plastic strain component increments and the
deviatoric stress components[ Focusing on incompressible materials\ Gao and Nemat!Nasser
"0872# found discontinuities of stress and velocity along lines radial from the crack tip which occur
at all crack speeds[ In their analysis\ the Mises yielding condition and the associated ~ow rule was
used[ Furthermore\ Leighton et al[ "0876# demonstrated the inconsistency between the dis!
continuities of stress and velocity _elds and the principle of maximum plastic work[ For steady
dynamic crack growth in an elasticÐperfectly plastic incompressible material obeying the Tresca
yielding condition and the associated ~ow rule\ Leighton et al[ "0876# constructed an asymptotic
solution valid for all crack speeds[ In their asymptotic solution\ the stress\ strain and particle
velocity components are continuous[ However\ their asymptotic solution does not reduce to the
asymptotic solution for the quasi!static case given by Drugan et al[ "0871# as the crack speed
approaches zero[ According to Leighton et al[ "0876#\ the domain of validity of their asymptotic
solution vanishes as the crack speed approaches zero[ Also\ there is no elastic unloading zone in
the solution of Leighton et al[ "0876#[

There are not many numerical studies in the literature on steady dynamic growth of mode I
cracks in an elasticÐplastic material under plane strain conditions[ Using an approach similar to
those proposed by Dean and Hutchinson "0879# and Parks et al[ "0870#\ Lam and Freund "0872\
0874# studied the in~uence of crack speeds on the stress and deformation _elds near a steadily
moving crack[ In Lam and Freund "0872\ 0874#\ no results including strain hardening e}ects were
reported[ The material was assumed to be elasticÐperfectly plastic and was characterized by the
Mises yielding condition and the associated ~ow rule[ They found that inertia "or crack speed# has
a signi_cant e}ect on the elasticÐplastic response of material particles near the crack tip\ and the
elastic unloading may occur behind the crack for higher speeds[

Both analytical and numerical investigations of steady dynamic growth of a mode I crack in
viscoplastic materials have received considerable attention in the past decade[ This problem is of
signi_cant interest since the material particles near the rapidly running crack tip experience a
remarkably high strain!rate deformation\ and the material resistance to plastic ~ow increases
dramatically at high strain!rates[

For steady dynamic growth of a mode I crack in rate!dependent materials characterized by an
elastic:power law viscoplastic model\ Lo "0872# and Brickstad "0872# found that the asymptotic
near!tip stress _eld in the high strain!rate zone is uniquely dominated by the local crack!tip stress
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intensity factor Ktip\ in the same singularity form as the asymptotic dynamic elastic stress _eld
given by Freund "0865# as long as the stress exponent is less than three\ except that an amplitude
below the elastic dynamic intensity factor K results due to plastic dissipation[ Thus\ the near!tip
stress _eld can be expressed as "see Freund and Hutchinson\ 0874#

sij �
Ktip

z1pr
Sij"u\ m# r : 9 "0#

where r\ u are planar polar coordinates centered at the tip^ m � v:cr is the crack Mach number^ v
and cr are the speeds of the crack tip and the Rayleigh wave\ respectively^ Sij are universal functions
for a given mode which may be found in Freund and Hutchinson "0874#^ Ktip is related to the
crack!tip energy release!rate Gtip for a mode I loading as "see Freund and Hutchinson\ 0874#

Gtip � f"m#
"0−n1#

E
K1

tip "1#

where f"m# may be found in Freund and Hutchinson "0874#[ The near!tip behavior of the high
strain!rate crack in rate!dependent materials is characterized by the above formula[ The objective
in both analytical and numerical studies is to relate the crack!tip energy release!rate Gtip and the
overall energy release!rate G which represents the overall crack driving force[ The in~uence of the
parameters of the viscoplastic material model and that of crack speed on this relationship are also
of interest[ Freund and Hutchinson "0874#\ starting with a constitutive equation that governs
plastic ~ow in two regimes] a low strain!rate regime where the yield stress in shear is a constant\
and a high strain!rate regime where the yield stress in shear is a linear function of the shear plastic
strain!rate\ presented a simple closed form expression for Gtip in terms of the parameters of the
viscoplastic material model\ the crack speed\ and the overall energy release!rate G[ Based on their
numerical analysis\ Mataga et al[ "0876# proposed a modi_ed formula for the crack!tip energy
release!rate Gtip[

Steady dynamic crack growth in rate!dependent materials has also been studied numerically[
Using a _nite element formulation similar to Dean and Hutchinson "0879# and Parks et al[ "0870#\
Freund et al[ "0875#\ Mataga "0875# and Mataga et al[ "0876# numerically investigated the problem
of Freund and Hutchinson "0874#[ In these numerical studies\ the relationship between Gtip and G
was examined[ As reported in Mataga et al[ "0876#\ they also observed that the original relation
given by Freund and Hutchinson "0874# underestimates plastic dissipation while the modi_ed
relation given by Mataga et al[ "0876# overestimates it[ Similar analysis was also performed by
Ostlund "0889#\ but with an emphasis on the size of the near!tip elements required to obtain
reliable results[ Shenoy and Krishna "0883# obtained a quantitative relationship between the
dynamic fracture toughness and the crack speed for this problem[

The _nite element method has been extensively employed for the numerical studies of crack
problems[ The conventional FEM does not provide a high resolution of localized steep gradients
near the tip for such problems[ Singular elements introduced to model steep gradients in Akin
"0865# do not improve the numerical performance for steady crack growth problems "see Ostlund\
0889#[ Very _ne elements have to be used around the crack tip to capture the asymptotic feature
of the respective stress and deformation _elds[ The steady state condition\ preferably\ requires the
use of rectangular elements\ all of the same height\ in the plastic zone leading to elements of an
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undesirable shape[ Furthermore\ an ill!conditioned sti}ness matrix may result due to a large
variation in the size of elements used[ Therefore\ using conventional _nite element analysis for
steady crack growth may lead to a con~icting situation] re_ning the mesh near the crack tip may
lead to improved accuracy^ while this may result in an ill!conditioned sti}ness matrix leading to a
loss of accuracy of the solution[ The di.culties associated with the FEM in numerical investigations
of steady crack growth justify the need to look for other high!accuracy numerical methods that
also avoid the above con~icting situation in the _nite element analyses[

The Element Free Galerkin "EFG# method has recently been applied for the analysis of crack
growth problems "see e[g[ Xu\ 0885 and the references listed there#[ Compared to the FEM\ the
EFG method can achieve high resolution of localized steep gradients and be very e}ective for
crack growth problems "see e[g[ Xu\ 0885^ Xu and Saigal\ 0886a\ b\ and the references listed there#[
Coupled with an extension of the convective mesh technique\ the EFG method has been employed
to simulate steady dynamic crack growth of mode I cracks in an elastic material under plane strain
conditions "see Xu\ 0885^ Xu and Saigal 0886a#[ The numerical predictions for the stress intensity
factor K\ the energy release rate G\ the near!tip _elds\ and the crack opening pro_les agree well
with the analytical results[ The results from EFG analyses were earlier found to be more accurate
than the corresponding FEM solutions in Xu "0885# and Xu and Saigal "0886a#[ The EFG method
has also been applied to simulate steady quasi!static growth of mode I cracks in an elasticÐplastic
material under plane strain conditions in Xu "0885# and Xu and Saigal "0886b#[ For this study the
numerical solution predicts the existence of an elastic unloading wedge which was also predicted
by Drugan et al[ "0871#[ A good agreement with the asymptotic near!tip stress _eld of Drugan et
al[ "0871# was also observed and an estimate for the range of validity of the asymptotic solution
of Drugan et al[ "0871# was developed[

The steady dynamic growth of mode I cracks in an elasticÐplastic material or an elasticÐ
viscoplastic material is studied in this paper[ A numerical scheme based on the extension of the
convective mesh technique and the EFG method is employed in this study[ Under the assumption
of small scale yielding\ a remote elastic stress or deformation _eld was imposed on the boundaries
of the domain under consideration\ which is of a size much larger compared to the size of the
active plastic zone[ The material is characterized by von Mises yielding condition and an associated
~ow rule[ Both rate!independent materials and rate!dependent materials are considered[ For rate!
independent materials\ both non!hardening materials and hardening materials are considered[ For
strain!hardening\ both linear hardening and power!law hardening models are employed[ To the
best knowledge of the authors\ no numerical results concerning steady dynamic crack growth in
hardening materials have been reported in the literature to date[ In the present study\ numerical
results show a good agreement with the asymptotic near!tip stress _eld for cracks growing with a
small speed in an elasticÐperfectly plastic material[ The elastic unloading zone was predicted by
the numerical solutions[ For rate!dependent materials\ the material was assumed to be rate!
independent elasticÐperfectly plastic when the plastic shear strain!rate is under a threshold value[
Above the threshold\ the material was considered to be viscoplastic with the yield stress in shear
depending linearly on the plastic shear strain!rate "see Freund and Hutchinson\ 0874^ Mataga et
al[\ 0876#[ A detailed examination of the assumptions employed in deriving the analytical expression
available in Freund and Hutchinson "0874# was made[ An extensive comparison of the relation of
the crack!tip energy release!rate Gtip to the overall energy release!rate G obtained from numerical
predictions and analytical results\ respectively\ was made[
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1[ Numerical formulation

The typical descriptions of steady dynamic crack growth in rate!independent materials and rate!
dependent materials are shown in Figs 0"a# and "b#\ respectively[ A Cartesian system for which
the crack edge coincides with the x¹ 2 axis\ and propagates along the x¹ 0 axis with a constant speed v¹
is employed[ The coordinates system "x¹ 0\ x¹ 1\ x¹ 2# is considered to be moving with its origin always
at the crack tip[ A state of plane strain deformations is assumed[ All variables are then independent
of x¹ 2\ and the displacement in the x¹ 2 direction is zero[ Using the steady state condition\ the material
time derivative of the Cartesian component of any vector or tensor may be replaced by the x¹ 0!
gradient as

1

1t
� −v¹

1

1x¹0

"2#

Fig[ 0[ Steady dynamic crack growth] "a# in rate!independent materials and "b# in rate!dependent materials[
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where v¹ is the speed of the crack tip[ Employing the non!dimensional quantities xi � x¹ i:l\
ui � u¹i:"tyl:m#\ sij � s¹ ij:ty\ oij � o¹ij:"ty:m# where m is the elastic shear modulus\ ty is the yield stress
in shear\ l � mG:t1

y is the characteristic length and G is the overall energy release rate of the crack\
the momentum equation\ using eqn "2#\ can be written in the non!dimensional form as

sij\j � m1
s ui\00 "3#

where ms � v¹:c1 is the non!dimensional crack speed\ and c1 � zm:r is the elastic shear wave speed
of the material[

The weak form corresponding to the momentum relation in eqn "3# is given as

gV
dvi\ jsij dV−gV

m1
s ui\0dvi\0 dV¦gG

m1
s n0ui\0dvi dG¦gGt

dvit�i dG

−gGu

dvili dG−gGu

dli"ui−u�i # dG � 9 "4#

where V is the convective domain under consideration^ G is the boundary of the domain V^ n0 is
the component of the unit normal to the boundary G in the x0 direction^ and t�i and u�i are the
prescribed tractions on traction boundaries Gt and the prescribed displacements on displacement
boundaries Gu\ respectively[ Since moving least squares interpolants "see e[g[ Belytschko et al[\
0883^ Xu\ 0885 and the references listed therein# are employed\ it is not possible to prescribe the
displacement boundary conditions directly[ Instead\ Lagrange multipliers\ li\ are used to impose
the displacement boundary condition in the weak form given above[ As long as the above weak
form is valid for arbitrary test functions dvi and dli subject to the usual admissibility conditions\
the momentum equation and the boundary conditions are satis_ed[

Under the context of small strain theory\ the non!dimensional strain oij can be expressed as the
sum of elastic strain oe

ij and plastic strain op
ij as

oij � oe
ij¦op

ij "5#

The nondimensional stress at the same point is given as

sij � Cijkl"okl−op
kl# "6#

or in the matrix form as

"s# � "De#""o#−"o�## "7#

where Cijkl is the non!dimensional elasticity tensor\ "De# is the non!dimensional elastic constitutive
matrix "see e[g[ Xu\ 0885#\ and

"s# � 8
s00

s11

s01
9\ "o�# � 8

op
00−nop

22

op
11−nop

22

o01
9 "8#

Note that "o�# is di}erent from "op# as long as op
22 � 9[ The use of "op# instead of "o�# as done in
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previous _nite element analyses "see e[g[ Dean and Hutchinson\ 0879^ Shenoy and Krishna\ 0883#
is not correct[

Substituting the expression for stresses given in eqn "6# into the weak form of eqn "4# leads to

gV
dvi\ jCijklokl dV−gV

dvi\ jCijklo
p
kl dV−gV

m1
s ui\0dvi\0 dV

¦gG
m1

s n0ui\0dvi dG¦gGt

dvit�i dG−gGu

dvili dG−gGu

dli"ui−u�i # dG � 9 "09#

Similar to Xu and Saigal "0886a\ b#\ the moving least squares interpolants are used to discretize
the displacement vector u and its corresponding test function vector dv as

u � s
n

0

FIuI "00#

dv � s
n

0

FIdvI "01#

where FI is an interpolant generated by the moving least squares method "see Xu\ 0885#[ The
Lagrange multipliers and their corresponding test functions are similarly discretized using Lagrange
interpolants CI"s# "see e[g[ Xu\ 0885^ Xu and Saigal\ 0886a\ b#[ These discretizations\ substituted
in the weak form of eqn "09#\ lead to the discrete system of equations given as

$
M−L¦P N

NT 9% 6
u

l7� 6
f¦f p

q 7 "02#

f p
I � gV

BT
I De"o�# dV "03#

where the matrices M\ N\ L\ P\ BI and vectors f\ q\ are as de_ned in Xu "0885#[ f p is a body force
term caused by the plastic strain "see e[g[ Dean and Hutchinson\ 0879^ Parks et al[ 0870^ Xu and
Saigal\ 0886b#[

Under the condition of small scale yielding "see e[g[ Lam and Freund\ 0874# a signi_cant zone
dominated by the elastic dynamic stress intensity factor K exists around a crack tip[ Therefore\ the
stress or displacement components on the boundary of the domain under consideration should
match the dynamic asymptotic stress _eld or displacement _eld as long as the boundary is far away
from crack tip compared to the maximum extent of the active plastic zone[ In addition\ the steady
state condition implies that the previous elasticÐplastic deformation history at a point A "x�0\ x�1#
can be traced by the path line x1 � x�1 which starts at the point A and is parallel to the direction
of the crack growth[ In other words\ the stress state at the point A can be obtained by integrating
the constitutive equations along the path line x1 � x�1 starting from the intersection point between
the path line and the upstream boundary of the domain under consideration upto the point A[
The steady state condition\ preferably\ requires the use of rectangular elements in the plastic zone
in FEM analyses because both the interpolation and integration in FEM rely on elements[ As
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explained above\ the use of rectangular elements in the FEM analyses may result in an ill!
conditioned sti}ness matrix[

2[ Constitutive equations

In the present study\ both rate!independent and rate!dependent constitutive equations are
considered[ For rate!independent materials\ strain hardening is also considered[

2[0[ Rate!independent stressÐstrain relationships

Two type of strain hardening stressÐstrain relationships were employed "see e[g[ Xu\ 0885#[ The
linear hardening relation in shear is given as

r−0 � a"g−0# "04#

where a � mt:m is the local slope of the non!dimensional stressÐstrain curve in pure shear[ The
power!law hardening relation in shear is given as

t � gn "05#

where n is the hardening exponent[
The elasticÐperfectly plastic case can be deduced from the above hardening stressÐstrain relation!

ships] for a � 9\ the linear strain hardening stressÐstrain relationship reduces to the elasticÐperfectly
plastic case^ for n � 9\ the power hardening stressÐstrain relationship also reduces to the elasticÐ
perfectly plastic case[

2[1[ Rate!dependent stressÐstrain relationships

The material elements in close proximity to the crack tip running at a high speed experience a
very large strain!rate\ which is usually above 092 s−0 "see e[g[ Freund and Hutchinson\ 0874^
Mataga\ 0875#[ For most visco!plastic materials\ the material response shows a dramatic increase
in ~ow resistance at strain!rates above the transition strain!rate głt "about 092 or 093 s−0#[ To
describe this feature of visco!plastic materials\ an idealized visco!plastic response was employed
by Freund and Hutchinson "0874# and Mataga et al[ "0876# and is also used here[ In the idealized
viscoplastic constitutive equations] at low strain!rates "plastic shear strain!rate gł

p ¾ głt#\ the material
is assumed to be elasticÐperfectly plastic with t¹ � ty^ at high strain!rates\ the increase of the plastic
shear strain!rate is linearly proportional to the increase of stress as

gł
p � głt¦

gł9"t¹−ty#
m

t¹ × ty "06#

In a non!dimensional form\ the constitutive model is expressed as

t � 0 g¾p ¾ Qj "07#

g¾ p � Qj¦Q"t−0# g¾ p × Qj "08#

where g¾p � gł
p:tc is the non!dimensional shear plastic strain!rate^ tc � l:c1 is the characteristic time^
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j � mgłt:tygł9 is a non!dimensional combination of the material parameters^ and Q � mgł9G:c1t
1
y is a

non!dimensional combination of the material parameters and the overall driving force\ and is
termed in the present study as the material!loading parameter[

2[2[ Multi!axial stressÐstrain relationships

The material behavior is assumed to be characterized by von Mises yielding condition and an
associated ~ow rule[ The strain hardening is assumed to be isotropic[ The total non!dimensional
strain!rate is given as o¾ij � o¾e

ij¦o¾p
ij\ where the non!dimensional elastic strain!rate can be expressed

as

o¾e
ij �

0
1"0¦n#

ð"0¦n#s¾ ij−ns¾ kkdijŁ "19#

The non!dimensional plastic strain!rate can be expressed for both rate!independent and rate!
dependent materials as

o¾p
ij �

l¾sij

1t
"10#

where sij is the non!dimensional stress deviator\ l¾ represents a non!dimensional e}ective plastic
shear strain!rate\ and is given as

l¾ �

F

G

j

J

G

f

0
0
a

−01 t¾ for linear hardening

0
0
n

t"0:n#−0−01 t¾ for power hardening

"11#

for non!hardening\ elasticÐperfectly plastic materials

t � 0 "12#

for rate!dependent materials

t � 0 g¾ p ¾ Qj "13#

g¾ � Qj¦Q"t−0# g¾ p × Qj "14#

3[ Integration of constitutive equations

The key step in the iterative scheme for solving the non!linear system of eqns "02# is the
calculation of the body force term ÐBT

I De"o�# dV[ To compute this term\ the plastic strains are
used at each integration point which are obtained from the stresses at that point[ Further\ the
previous stress and deformation histories of the material point are required so as to obtain the
stress state at the point[ As mentioned above\ the steady state condition indicates that the stress
state at a point "x�0\ x�1# can be reached by integrating the constitutive equation along the path line
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x1 � x�1 starting from the intersection point between the path line and the upstream boundary of
the domain under consideration upto the point "x�0\ x�1#[

In order to satisfy the implicit steady state condition and to take advantage of it\ the body force
term f p was determined by computing the contributions to the integral\ ÐBT

I De"o�# dV\ layer by
layer[ Each layer is divided into a certain number of cells each of the same height as that of the
layer[ These cells correspond to the EFG cells in the present study[ The integration in each layer
is computed cell by cell from right to left[ For each cell\ the same number of integration points are
employed[ The integration of the constitutive equations is performed along two adjacent integration
points at the same height[ Assuming that the stress state at the left integration point is known\ the
strain increment is approximated by the di}erence between the strains at two adjacent integration
points[ Further\ assuming that the strain!rate during this small step stays constant\ the scheme
developed by Mataga "0875# can be used to perform the integration of the constitutive equations[

The EFG method a}ords two distinct advantages "see e[g[ Xu\ 0885 and the references listed
therein#[ First\ the integration scheme described above preferably requires rectangular elements
with the same height as that of a layer in which they occur for a FEM analysis[ Re_ning a mesh
at the crack tip leads to the need for a large number of layers[ The separation of the interpolation
scheme and the domain integration in the EFG method overcomes this problem[ Second\ more
integration points can be used in any cell to achieve the desired accuracy[ These two features lead
to better accuracies of solutions obtained using the EFG method compared to the FEM[

4[ Solution strategy

Since the body force term\ f p\ is also a function of the unknown displacement vector u\ the
system of eqns "02# is nonlinear and requires an iterative scheme for its solution[ The iterative
algorithm proposed by Dean and Hutchinson "0879#\ Parks et al[ "0870# and Lam and Freund
"0874# was implemented in the present study[ The iterative procedure starts with an initial estimate
of the solution and a trial displacement _eld is obtained from the system of eqns "02#[ Using these
displacements\ the strain _eld is next computed[ Based on the constitutive equation integration
algorithm\ the stress and plastic strain components can be obtained at each integration point of
the domain V[ The body force term\ f p\ due to the plastic strain is then computed using eqn "03#[
The above procedure is repeated until a convergent displacement _eld is reached[

During each iteration\ the matrices M\ N\ L and P remain unchanged[ Furthermore\ the
matrices M\ N\ L and P depend only upon the arrangement of nodal points in the domain under
consideration and the crack speed ms[ Constitutive equations in~uence only the right hand side
vector f p[ Thus\ the sti}ness matrix of eqn "02# is needed to be constructed and decomposed only
once for all steady dynamic crack growth problems for various materials[ For a given crack speed\
ms\ numerical solutions were obtained for a series of steady dynamic crack growth problems[ The
elastic solution ""o�# � 9# was employed as an initial estimate of the solution to the _rst problem[
Then\ the solution to the previous problem was employed as the initial estimate of the solution to
the subsequent problem[

5[ Numerical results and discussions

Due to the symmetry of mode I cracks\ only the upper half of the domain under consideration
was considered[ Two di}erent nodal point arrangements and the corresponding Lagrange mul!
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Fig[ 1[ Arrangements of 1016 nodal points] "a# global arrangement and "b# local re_ned arrangement near the tip[

tipliers] 1016 nodal points shown in Fig[ 1 with 24 Lagrange multipliers\ and 1814 nodal points
shown in Fig[ 2 with 30 Lagrange multipliers\ respectively\ were employed[ Linear basis functions
were used to generate the moving least squares interpolants[ A total of 1201 and 2199 domain
integration cells were used for the arrangement of 1016 points and that of 1814 points\ respectively[
A 4×4 numerical integration scheme was employed in each integration cell[ The overall size of the
domain under consideration is about 19 times the maximum extent of the active plastic zone[ The
following boundary conditions were imposed in the numerical analyses "see e[g[ Xu\ 0885#[ The
crack surface was considered to be traction free and the normal displacements on the remainder
of the crack plane edge were constrained to be zero[ Tractions were applied to the other three sides
of the domain under consideration according to the asymptotic elastic stress _eld given by Freund
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Fig[ 2[ Arrangements of 1814 nodal points] "a# global arrangement and "b# local re_ned arrangement near the tip[

"0865#[ As stated earlier\ the asymptotic elastic stress _eld has the same singular form as given in
eqn "0# except for using the remote elastic dynamic stress intensity factor K instead of the near!tip
stress intensity factor Ktip[ Similarly\ K is related to the remote energy release rate G as given in
eqn "1# with K and G replacing Ktip and Gtip\ respectively[

The existence of the plastic wake will cause a mismatch between the tractions imposed according
to the asymptotic elastic stress _eld and the numerical solution in the wake[ As reported by Mataga
"0875#\ this mismatch has only a slight in~uence on the near!tip numerical solution as long as the
overall size of the domain under consideration is large enough compared to the maximum extent
of the active plastic zone[ Based on these arguments\ the in~uence of the mismatch on the near!tip
numerical solution can be ignored for the present study[
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In all numerical analyses reported here\ a Poisson|s ratio of 9[2 for both rate!independent
materials and rate!dependent materials was used[ For rate!dependent materials\ Q � 49\ 24\ 19\ 4
and j � 9[0\ 9[90 were adopted to investigate the in~uence of the viscous material parameters[
Using the present arrangement of nodal points\ numerical solutions based on EFG formulations
exhibited divergence for non!dimensional crack speeds ms greater than 9[5[ The convergence
criterion employed in the present study is given as ="u"n#

i −u"n−0#
i #:u"n#

i = ¾ DTOL\ where u"n#
i is a

component of the solution displacement vector at the nth iteration[ A maximum tolerance DTOL
of 9[914 was employed[ In most cases\ 09Ð39 iterations were needed to obtain the solution to the
problem of steady dynamic crack growth in rate!independent materials^ and 4Ð19 iterations were
needed to obtain the solution to the problem of steady dynamic crack growth in rate!dependent
materials[

The numerical results for steady dynamic crack growth in rate!independent materials are pre!
sented _rst with emphasis on the in~uence of crack speeds and of strain hardening of materials[
For the in~uence of crack speeds\ the numerical results presented in this paper con_rmed the
observations made in previous studies "see e[g[ Achenbach and Dunayevsky\ 0870b^ Lam and
Freund\ 0872\ 0874#[ As for the in~uence of strain hardening of materials\ the numerical results
presented here for the _rst time revealed the trend of this in~uence on the mechanics of steady
dynamic crack growth[ The numerical results for steady dynamic crack growth in rate!dependent
materials are presented next with emphasis on determining the relationship between Gtip and G[
These results further demonstrated the validity of the assumptions made in the literature in deriving
the closed form relations for Gtip and G by Freund and Hutchinson "0874# and Mataga et al[
"0876#[ Also\ a comparison of the relationship between Gtip and G obtained from analytical and
numerical results\ respectively\ was made[

5[0[ Steady dynamic crack `rowth in non!hardenin` materials

"0# Near!tip stress distributions

Steady cracks moving at a non!dimensional speed of ms � 9[94 were considered[ The angular
distributions of stresses at the non!dimensional radial distances r � 9[904 and 9[92\ which are
normalized by the characteristic length l\ are shown in Fig[ 3 for ms � 9[94[ The asymptotic stress
distributions due to Achenbach and Dunayevsky "0870b# which are applicable only to low crack
speeds are also shown in this _gure for comparison[ As seen from this _gure\ the stress distributions
for s00 and s01 at various radial distances are nearly the same and are in good agreement with the
asymptotic ones[ However\ the computed stress distributions for s11 can not clearly reveal the same
independence with respect to the radial distance[ The di}erences may be attributed to the di}erence
between the material model used in the present study and the material model used by Achenbach
and Dunayevsky "0870b#[ As stated earlier\ the Tresca yielding condition and the Mises ~ow rule
were used in the asymptotic analysis presented by Achenbach and Dunayevsky "0870b#\ while the
Mises yielding condition and the associated ~ow rule were employed in the present study[

A comparison between the present study and the FEM analyses presented by Lam and Freund
"0874# is shown in Fig[ 4"a# for stress distributions at the non!dimensional radial distance r �
9[9031 that is normalized by the characteristic length l for ms � 9[3\ noting that r � 9[9031 in the
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Fig[ 3[ Stresses around the moving crack tip in an elasticÐperfectly plastic material with crack speed ms � 9[94[

present study is equivalent to 9[906"K:s9#1 used by Lam and Freund "0874#[ As seen from Fig[
4"a#\ the two numerical analyses reveal the same trend and are in good agreement[ The stress _elds
near the tip growing steadily in an elastic perfectlyÐplastic material\ as shown in Fig[ 4"b#\ have
similar angular distribution patterns for various crack speeds[ The in~uence of crack speeds on
the computed near!tip stress _elds is shown in Fig[ 4"b#[ A sector of uniform stress _eld exists
ahead of the moving crack tip[ With increasing crack speeds\ for example from ms � 9[0 to ms � 9[3\
this sector becomes more apparent and the stress components s00 and s11 in this sector reduce
remarkably as was also observed by Lam and Freund "0874#[

"1# Active plastic zones

The active plastic zones near the moving crack tip were obtained for ms � 9[0\ 9[1\ 9[2 and 9[3
and are shown in Figs 5"a#Ð5"d#\ respectively\ with the blank portion representing the active plastic
zones[ The points shown in these _gures represent the integration points at which the stress state
is elastic[ The maximum vertical extent of the active plastic zone increases with increasing crack
speeds as also reported by Lam and Freund "0874#[ Compared to the plastic zones for various
crack speeds given by Lam and Freund "0872#\ the following trends were observed by both Lam
and Freund "0872# and the present study] the elastic unloading zone increases in size with increasing
crack speeds^ the plastic reloading zone is located farther away from the crack tip for large crack
speeds\ such as ms � 9[3[ However\ the di}erences in the active plastic zone shapes for various
crack speeds shown in Lam and Freund "0872# could not be observed in the present study[

The existence of the elastic unloading zone behind the moving crack tip was not reported by
Slepyan "0865# and Achenbach and Dunayevsky "0870b# for steady dynamic crack growth in
compressible materials\ and by Gao and Nemat!Nasser "0872# and Leighton et al[ "0876# for
steady dynamic crack growth in incompressible materials[ All of these asymptotic solutions ruled
out the elastic unloading sector from the near!tip _elds for all crack speeds[ The existence of the
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Fig[ 4[ "a# Stresses around the moving crack tip in an elasticÐperfectly plastic material with a crack speed ms � 9[3^ "b#
in~uence of crack speeds on stress distributions in an elasticÐperfectly plastic material[

elastic unloading zone behind the moving crack tip appears in our numerical results and in the
results reported by Lam and Freund "0874#[ A further study is required to establish the range of
validity of the asymptotic solutions[

"2# Crack opening pro_les and theoretical fracture toughnesses

The crack opening pro_les were obtained for various crack speeds of ms � 9[0\ 9[2 and 9[3 for
steady dynamic crack growth in an elastic perfectly!plastic material and are shown in Fig[ 6[ It is
noted that the non!dimensional crack opening displacement is given by d � 1u0"x0\ 9#[ Using these
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Fig[ 5[ Active plastic zones in elasticÐperfectly plastic materials with non!dimensional crack speeds of "a# ms � 9[0^ "b#
ms � 9[1^ "c# ms � 9[2^ and "d# ms � 9[3[

non!dimensional computed crack opening pro_les\ the e}ect of crack speeds on the relationship
between theoretical fracture toughness and crack face opening angle\ d:r � md¹:tyr¹\ as shown in
Fig[ 7\ may be obtained[ To construct this relationship\ it is assumed that the same fracture
criterion is applicable for the steady growth of a moving crack as is used for the initiation of a
stationary crack "see e[g[ Dean and Hutchinson\ 0879^ Lam and Freund\ 0874#[ The fracture
criterion based on crack opening displacements is adopted here[ According to this criterion\ a
stationary crack initiates as the crack opening displacement d¹ at r¹ � r¹c reaches a critical value d¹c

under a remote driving force "energy release!rate# Gc[ Correspondingly\ once the steady state of
crack growth has been established\ the crack keeps running at a constant speed after the crack
opening displacement d¹ at r¹ � r¹c "measured from the moving crack tip# reaches a critical value d¹c

under a remote driving force Gd[ The ratio Gd:Gc may be obtained based on the crack opening
pro_les for moving cracks given in Fig[ 6 and those for a stationary crack given by Tracey "0865#[
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Fig[ 6[ Crack opening pro_les for an elasticÐperfectly plastic material for various crack speeds[

Fig[ 7[ The in~uence of crack speeds on the relationship between the remote driving force Gd:Gc and the crack face
opening angle[

The variation of remote driving force\ Gd:Gc\ with the crack face opening angle\ d:r\ that is
required to propagate the crack steadily is shown in Fig[ 7 for crack speeds of ms � 9[0\ 9[2 and
9[3[ From this _gure\ it is seen that Gd:Gc increases as ms increases for a given crack face opening
angle[ Thus\ a larger dynamic driving force Gd:Gc is needed to keep a crack running at a faster
speed[ The same trend was also observed by Lam and Freund "0874#[
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5[1[ Steady dynamic crack `rowth in hardenin` materials

In this section\ the in~uence of strain hardening on various features of steady dynamic crack
growth is studied[ Results on this topic have not been reported in the literature to date[

To investigate the e}ect of strain hardening\ the comparisons of solutions corresponding to
various hardening levels and all for the same crack speed are made[ The in~uence of strain
hardening was observed through numerous numerical studies to have the same trend for various
speeds[ The numerical solutions for a crack speed of ms � 9[2 were used to illustrate the e}ect of
strain hardening in this study[

"0# Near!tip stress distributions

The near!tip angular distributions of stresses at non!dimensional radial distances r � 9[904 and
9[92 are shown in Figs 8"a# and "b# for the power hardening material with n � 9[1 and for the
linear hardening material with a � 9[0\ respectively[ The common features of the stress distributions
shown in Fig[ 8 is that the magnitudes of s00 and s11 increase remarkably with decreasing radial
distance r\ especially in the zone ahead of the moving crack tip[ A similar trend has also been
observed for steady\ quasi!static moving cracks "see e[g[ Xu and Saigal\ 0886b#[

The angular distributions of stresses at the non!dimensional radial distance r � 9[904 are shown
in Fig[ 09"a# for power hardening materials with n � 9[1\ 9[0 and 9[9 and in Fig[ 09"b# for linear
hardening materials with a � 9[0\ 9[94 and 9[9\ respectively[ The e}ect of strain hardening on the
near!tip stress _eld can be seen from these _gures[ With increasing strain hardening\ the amplitudes
of the stresses increase except in the portion near the crack ~ank[ This trend exists for both power
hardening materials and linear hardening materials[ A similar phenomenon was also observed for
steady\ quasi!static moving cracks "see e[g[ Xu and Saigal\ 0886b#[

"1# Active plastic zones

The active plastic zones surrounding the moving crack tip are shown in Figs 00"a#Ð"d#] for the
power hardening materials in Figs 00"a# and "b# for n � 9[1 and n � 9[0\ respectively^ and for the
linear hardening materials in Figs 00"c# and "d# for a � 9[0 and a � 9[94\ respectively[ The general
characteristics of the active plastic zones shown in Fig[ 8 are the same[ A large active plastic zone
surrounding the moving crack tip as well as a plastic reloading zone are observed[ An elastic
unloading sector lying between these two zones can also be observed[

The height of the plastic reloading zone increases with decreasing strain hardening for both
power hardening and linear hardening materials[ Accordingly\ with this increase\ the elastic
unloading sector also becomes apparent[ With decreasing strain hardening\ the maximum non!
dimensional vertical extent\ h\ of the active plastic zone increases[ For power hardening materials\
h increases from 9[051Ð9[062 as n decreases from 9[1Ð9[0^ for linear hardening materials\ h increases
from 9[052Ð9[062 as a decreases from 9[0Ð9[94[

"2# Crack opening pro_les and theoretical fracture toughnesses

The crack opening pro_les for power hardening materials with n � 9[1\ 9[0 and 9[9 were obtained
for a crack speed of ms � 9[2 and are shown in Fig[ 01[ Based on these crack opening pro_les\ the
in~uence of strain hardening on the relationship between the non!dimensional remote driving
force\ Gd:Gc\ and the crack face opening angle\ d:r\ may be investigated[ Using the same crack
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Fig[ 8[ Variation of stresses with the radial distance r in hardening materials] "a# power hardening materials with n �
9[1^ and "b# linear hardening materials with a � 9[0[

opening displacement based fracture criterion as mentioned above for elasticÐperfectly plastic
materials\ and assuming that this criterion can be applied to both crack initiation and crack growth
in the same material\ the relationships for the non!dimensional remote driving force\ Gd:Gc\ vs the
crack face opening angle d:r\ were obtained for strain hardening parameters n � 9[1\ 9[0\ and 9[9\
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Fig[ 09[ The in~uence of strain hardening on the near!tip angular stress distribution at r � 9[904] "a# power hardening
materials^ and "b# linear hardening materials[

respectively\ and are shown in Fig[ 02[ Similar to the trend observed by Dean and Hutchinson
"0879#\ Lam and Freund "0874# and Xu and Saigal "0886b# for steady\ quasi!static moving cracks\
the non!dimensional remote driving force\ Gd:Gc\ increases with decreasing strain hardening[ This
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Fig[ 00[ Active plastic zones for hardening materials with crack speed ms � 9[2] "a# power hardening\ n � 9[1^ "b# power
hardening\ n � 9[0^ "c# linear hardening\ a � 9[0^ and "d# linear hardening a � 9[94[

trend indicates that materials with lower hardening provide greater resistance to steady dynamic
crack growth[

5[2[ Steady dynamic crack `rowth in viscoplastic materials

Numerical calculations based on the EFG formulation presented in this study have been per!
formed for a variety of combinations of material parameters and crack speeds[ In this section\ the
numerical solutions are presented and their comparisons against the asymptotic solutions are
made[ A brief review of the analytical solutions presented by Freund and Hutchinson "0874# and
Mataga et al[ "0876# is given in the Appendix[
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Fig[ 01[ The in~uence of strain hardening on crack opening pro_les for crack speed ms � 9[2 for power hardening
materials[

Fig[ 02[ The in~uence of strain hardening on the relationship between the remote driving force Gd:Gc and the crack face
opening angle for crack speed ms � 9[2[

"0# Near!tip angular stress distributions

The near!tip angular stress distributions for ms � 9[1 and 9[3\ Q � 4\ and j � 9[0 are used to
examine the characteristics of the stress _eld near the tip of high strain!rate cracks[ The near!tip
angular stress distributions for ms � 9[1 at non!dimensional radial distances r � 9[904 and r � 9[92
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Fig[ 03[ The near!tip stresses for high strain!rate cracks for ms � 9[1\ Q � 4 and j � 9[0 at radial distances] "a# r � 9[904^
and "b# r � 9[92[

are shown in Figs 03"a# and "b#\ respectively[ The corresponding stress distributions for ms � 9[3
are shown in Figs 04"a# and "b#\ respectively[ The analytical results in these _gures correspond to
the near!tip stress _eld given in eqn "0#[ The near!tip stress intensity factor Ktip is determined
according to eqn "1# from the computed value of Gtip:G[ The values of Gtip:G were taken to be
9[6236 and 9[7223\ which were _rst obtained by calculating a path independent integral and will
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Fig[ 04[ The near!tip stresses for high strain!rate cracks for ms � 9[3\ Q � 4 and j � 9[0 at radial distances] "a# r � 9[904^
and "b# r � 9[92[

be discussed later\ for ms � 9[1 and 9[3\ respectively[ Good agreements of the computed near!tip
angular stress distributions with the analytical results are seen for both radial distances in these
_gures[ These agreements indicate that using the stress _eld given by the relation in eqn "0# in the
entire active plastic zone "see Freund and Hutchinson\ 0874# is a good simpli_cation for this case[
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Fig[ 05[ The integral contour C used to calculate the crack!tip energy release rate Gtip:G[ rd is the size of the domain
under consideration[

"1# Path independence of crack!tip energy release!rate Gtip:G

The crack!tip energy release!rate Gtip:G may be expressed using a path independent integral as

Gtip

G
� gC

ð"U¦T#n0−sijnjui\0Ł dG "15#

where U is the non!dimensional stress work density^ T � 0
1
m1

s ui\0ui\0 is the non!dimensional kinetic
energy density^ C is an arbitrary contour described in a counterclockwise fashion^ and nj is the jth
component of the normal to the contour C[

The contour integral was computed along the contour C shown in Fig[ 05\ and values of rc were
taken to be 9[91\ 9[93\ 9[95\ 9[97\ 9[09\ 9[01\ 9[05\ 9[19 and 9[13\ respectively[ A typical variation
of the computed Gtip:G with respect to the size rc of integral contours is shown in Fig[ 06[ A good
independence of the computed Gtip:G with respect to integral contours is observed from this _gure[
The average values of Gtip:G over 9[91 ¾ rc ¾ 9[01 and maximum di}erences from the average
value for various combinations of ms\ j and Q\ were computed corresponding to these paths and
are given in Table 0[ It is seen from this table that the maximum di}erence between the values of
Gtip:G computed using these paths and the average value of Gtip:G is 1[34) and corresponds to
rc � 9[91[ For most paths\ this di}erence is below 9[4)[ These discrepancies of Gtip:G for various
paths used for the evaluation of the line integral are smaller than those reported by Freund and
Hutchinson "0874# and Ostlund "0889# and are reasonable for a numerical study to indicate path
independence[ This path independence provides a further validation of the procedures of this
study[ The average value of Gtip:G from these integration paths was employed for all subsequent
calculations[

"2# Active plastic zones

The active plastic zone in viscoplastic materials is composed of two zones] a high strain!rate
zone\ and a low strain!rate zone[ As typical illustrations\ the low and high strain!rate zones for a
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Fig[ 06[ The variation of computed crack!tip energy release!rate Gtip:G with respect to the size rc of integral contours for
ms � 9[3\ Q � 49 and j � 9[0[

Table 0
Path independence of Gtip:G

Maximum relative error
Case Q ")# Averaged Gtip

A 49 1[34 9[1564
24 0[62 9[2241
19 0[40 9[3494
4 0[95 9[6236

B 49 0[60 9[2508
24 0[26 9[3336
19 9[87 9[4671
4 9[58 9[7223

C 49 0[28 9[2832
24 0[06 9[3686
19 9[81 9[5012
4 9[55 9[7498

Case A] ms � 9[1\ j � 9[0[ Case B] ms � 9[3\ j � 9[0[ Case C]
ms � 9[3\ j � 9[90[

crack speed of ms � 9[2\ the material parameter j � 9[0\ and for two di}erent values of material!
loading parameters\ Q � 49 and 09\ are shown in Figs 07 and 08\ respectively[ The parameter Q
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Fig[ 07[ The active plastic zones for ms � 9[2\ Q � 49 and j � 9[0] "a# low strain!rate zone^ and "b# high strain!rate
zone[
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Fig[ 08[ The active plastic zones for ms � 9[2\ Q � 09 and j � 9[0] "a# low strain!rate zone^ and "b# high strain!rate
zone[
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Table 1
Gwake for various combinations of ms\ j and Q

Q 49 24 19 4

ms � 9[1 j � 9[0 9[9067 9[9053 9[9032 9[9926
ms � 9[3 j � 9[90 9[9053 9[9016 9[9965 9[9900
ms � 9[3 j � 9[0 9[9079 9[9033 9[9978 9[9904

may be considered as a measure of the overall driving force based on the material properties and
characterizes the steady crack growth in viscoplastic materials[ The points shown in Figs 07 and
08 correspond to the integration points that are at the yield state[

As shown in Fig[ 07\ for Q � 49\ a reloading plastic zone occurs trailing the crack tip behind
the active plastic zone[ The results shown in Fig[ 07 appear similar to those for rate!independent
elasticÐperfectly plastic materials[ Since the response of the viscoplastic material model employed
here reduces to that of the rate!independent elasticÐperfectly plastic materials when Q approaches
in_nity "see Mataga et al[\ 0876#\ the similarity observed in Fig[ 07 is reasonable[ Unlike as in Fig[
07\ there is no reloading plastic zone for Q � 09 as seen from the results in Fig[ 08[ With decreasing
Q\ the high strain!rate zone expands\ and the low strain!rate zone shrinks simultaneously[ The
maximum vertical extent of the active plastic zone also decreases slightly[ These observations
indicate that the rate!dependent response of materials becomes dominant with decreasing Q[

"3# Examination of the assumptions in deriving asymptotic solutions

Two assumptions have been employed in the literature in deriving the analytical expression for
Gtip presented by Freund and Hutchinson "0874# and Mataga et al[ "0876#[ First\ the residual
elastic strain energy Gwake locked in the plastic wake is small enough to be neglected[ Second\ the
plastic dissipation can be calculated using the near!tip stress distribution given in eqn "0# everywhere
in the active plastic zone[ The latter assumption implies that the plastic dissipation in the low
strain!rate zone is small compared to that in the high strain!rate zone and it can be ignored[
These assumptions are now examined using the numerical solutions obtained from the present
formulation[ The parameters\ Gwake:G and rhs\ may be extracted from the numerical results where
rhs is the ratio of the energy dissipated in the high strain!rate zone to the total energy dissipated in
the active plastic zone[

The parameter Gwake:G was computed using the line integral given in eqn "A[1# in the Appendix[
The values of Gwake:G for various combinations of the material parameters j\ Q and the crack
speed ms were given in Table 1[ The contribution of Gwake:G is observed to be less than 0[7) for
Q ¾ 49 from this table[ The variation of crack speeds ms and of material parameters j only have
a slight in~uence on Gwake:G[ On the contrary\ the material!loading parameter Q has a dominant
e}ect on the variation of Gwake:G and it decreases remarkably with decreasing Q[ That is\ the
residual elastic strain energy locked in the plastic wake decreases as the material response becomes
more rate!dependent or more rate!sensitive[ These observations indicate that it is reasonable to
neglect the residual elastic strain energy locked in the plastic wake for high strain!rate crack growth
"see Freund and Hutchinson\ 0874#[
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The ratio rhs may be computed using eqn "A[0# in the Appendix[ The values of rhs for various
combinations of the material parameters j\ Q and the crack speed ms were given in Table 2[ It is
seen that the energy dissipated in the high strain!rate zone is usually more than 87) of the total
energy dissipated in the active plastic zone[ The ratio rhs increases with increasing crack speeds ms\
decreasing material parameters j and decreasing material!loading parameters Q[ In short\ the ratio
of the energy dissipated in the high strain!rate zone to the total energy dissipated in the active
plastic zone increases as the rate response of the material becomes dominant in terms of increasing
crack speeds\ decreasing j and decreasing Q[ Therefore\ using the energy dissipated in the high
strain!rate zone to represent the total energy dissipated in the active plastic zone is also a reasonable
simpli_cation for high strain!rate crack growth[ It is noted\ however\ that these studies do not
directly examine the second assumption[

"4# The relation between Gtip and G

As mentioned above\ the main objective of numerical studies is to relate the crack!tip energy
release!rate Gtip and the overall energy release!rate G\ and to study the in~uence of the material
parameters and the crack speeds on this relation[ The non!dimensional crack!tip energy release!
rate Gtip:G extracted from the numerical solutions is used to carry out these studies[

The variation of Gtip:G with Q corresponding to the material parameter j � 9[0 was obtained
for crack speeds ms � 9[1 and 9[3 and is shown in Figs 19"a# and "b#\ respectively[ The two
asymptotic solutions due to Freund and Hutchinson "0874# and Mataga et al[ "0876# are also
shown in these _gures for comparison[ As seen from these _gures\ for small Q\ the di}erence
between the two asymptotic solutions is small and the numerical results also provide a good
agreement[ As Q becomes large\ the di}erence between the two asymptotic expressions increases
and the numerical results deviate from these solutions[ The numerical results\ however\ lie approxi!
mately in the middle of the two analytical results[

A comparison of the numerical predictions and the analytical results is shown in Fig[ 10 where
the crack!tip release!rate Gtip:G is plotted against the material!speed!loading parameter z de_ned
in the Appendix[ As seen in Fig[ 10\ the numerical results lie approximately in the middle of the
two asymptotic ones[ For Gtip:G below 9[4\ there are lesser agreements as also observed by Mataga
et al[ "0876#[

Table 2
The percentages occupied by the energy dissipated in the high strain!rate
zone in the total energy dissipated in the active plastic zone

Q 49 ")# 24 ")# 19 ")# 4 ")#

ms � 9[3 j � 9[90 88[86 099 099 099
ms � 9[3 j � 9[0 85[47 87[05 88[34 88[85
ms � 9[1 j � 9[0 78[22 82[69 87[06 88[83

rhs] The ratio of the energy dissipated in the high!strain!rate zone to the
total energy dissipated in the active plastic zone[
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Fig[ 19[ The dependence of the crack!tip energy release rate Gtip:G on the crack!loading parameter Q for di}erent crack
speeds] "a# ms � 9[1^ and "b# ms � 9[3[

6[ Conclusion

An EFG based formulation for steady dynamic crack growth was developed in the present
study[ In this formulation\ an extension of the convective mesh technique in FEM was employed
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Fig[ 10[ Variation of the crack!tip energy release rate Gtip:G with the material!speed!loading parameter z[

to simulate the crack growth[ Under the condition of small scale yielding\ the elastic asymptotic
stress or displacement _eld was imposed on the remote boundaries of the domain under consider!
ation[ The integration of constitutive equations was performed along the path line parallel to the
direction of the crack growth made possible by the implicit requirement of the steady state
condition[ Based on the present formulation\ a series of numerical solutions to steady dynamic
growth problems of mode I cracks were obtained[ The validity of the formulations was dem!
onstrated by comparing the numerical solutions with available analytical solutions\ and examining
the theoretical invariants\ such as the path!independent integral[ Steady dynamic crack growth in
rate!independent materials as well as rate!dependent materials was considered[

For steady dynamic crack growth in rate!independent materials\ numerical results con_rmed
that crack speeds have an important in~uence[ With increasing crack speeds\ the existence of the
elastic unloading wedge becomes apparent and the remote driving force required to propagate the
crack increases[ The numerical results for the _rst time revealed that the in~uence of strain
hardening on steady dynamic crack growth in rate!independent materials shows the same trends
as for steady quasi!static crack growth reported by Xu and Saigal "0886b#[

For steady dynamic crack growth in rate!dependent materials\ a comprehensive examination
was made of the assumptions made in deriving the asymptotic solutions available in the literature
"see e[g[ Freund and Hutchinson\ 0874^ Mataga et al[ 0876#[ Numerical results indicated that
neglecting the residual elastic strain energy locked in the plastic wake and using the plastic
dissipated energy in the high strain!rate zone instead of that in the entire active plastic zone are
reasonable for high strain!rate crack growth[ The material!loading parameter Q\ which signi_es
the combined in~uence of the material properties and the overall driving forces\ is a dominant
parameter for determining the level of high strain!rate crack growth[ The formula given by Freund
and Hutchinson "0874# overestimates the crack!tip energy release rate Gtip:G\ while the formula
given by Mataga et al[ "0876# underestimates it as the material!speed!loading parameter z decreases[
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Appendix[ Asymptotic analyses of high strain!rate crack growth

The near!tip behavior of high strain!rate cracks is characterized by eqns "0# and "1#[ The main
objective in the analytical studies is to relate the crack!tip energy release!rate Gtip to the overall
energy release!rate G[ A general relation between Gtip and G was established by Freund and
Hutchinson "0874# using a particular path!independent integral of the form

Gtip

G
� 0−

0
ms gA

sijo¾
p
ij dA−

Gwake

G
"A[0#

where A is the area of the active plastic zone^ the second term on the right hand side represents
plastic dissipation^ and Gwake represents the residual elastic strain energy trapped in the plastic
wake trailing the crack[ The above equation represents a basic steady state energy balance relation!
ship[ The term Gwake:G can be expressed using a line integral as

Gwake

G
� 1 g

h

9

U�e dx1 � 1 g
h

9

lim
x0:−�

Ue"x0\ x1# dx1 "A[1#

where Ue"x0\ x1# is the elastic strain energy density locked in the plastic wake^ and h is the height
of the plastic wake far behind the crack tip[

Two simpli_cations have been made in deriving the closed form expression for Gtip[ One was to
ignore the elastic strain energy locked in the plastic wake\ i[e[ to neglect the term Gwake in the above
energy balance equation[ The other was to use the near!tip stress distribution given by eqn "0#
everywhere in the active plastic zone to calculate the plastic dissipation[ This leads to the following
closed form relationship between Gtip and G

Gtip

G
� 0−

0
2

D"m#"0¦1j#
mgł9G

Cst
1
y 0

Gtip

G 1
1

"A[2#

with

D"m# �
0
1

H"m#
ms

"A[3#

H"m# �
1

p1

B"m#

ð"0−n# f"m#Ł1
"A[4#
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B"m# � g
p

−p

ð0
1
S?ij"u#S?ij"u#Ł1 du "A[5#

S?ij � S?ij−
0
2
Sii "A[6#

Sij and f"m# may be found in the literature "see e[g[ Freund\ 0865^ Freund and Hutchinson\ 0874#[
Mataga et al[ "0876# presented a modi_ed formula for the relation for Gtip and G as

Gtip

G
� $0¦

0
2

D"m#"0¦1j#
mgł9G

c1t
1
y %

−0

"A[7#

The relation given in eqn "A[2# due to Freund and Hutchinson "0874# overestimates Gtip:G
"underestimates the plastic dissipation#\ while relation in eqn "A[7# due to Mataga et al[ "0876#
underestimates Gtip:G "overestimates the plastic dissipation#[ Noting that both asymptotic relations
depend on a single parameter 0

2
D"m#"0¦1j#"mgł9G:c1t

1
y # and letting

z � ð0¦0
2
D"m#"0¦1j#"mgł9G:c1t

1
y #Ł−0\ which combines the in~uence of material parameters and

crack speeds and will be termed in this study as the material!speed!loading parameter\ the formula
due to Mataga et al[ "0876# can simply be expressed as

Gtip

G
� z "A[8#

The formula due to Freund and Hutchinson "0874# can be similarly rewritten as

Gtip

G
�

−z¦z3z−2z1

1"0−z#
"A[09#
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